

AFRL-IF-RS-TR-2002-87
Final Technical Report
April 2002

THE ARIEL DISTRIBUTED PROGRAMMING
PROJECT: SECURE EXECUTION OF MOBILE
PROGRAMS

University of California at Davis

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F208

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-87 has been reviewed and is approved for publication.

APPROVED:

 KEVIN A. KWIAT
 Project Engineer

 FOR THE DIRECTOR:

 WARREN H. DEBANY, Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2002

3. REPORT TYPE AND DATES COVERED
Final May 97 – Nov 00

4. TITLE AND SUBTITLE
THE ARIEL DISTRIBUTED PROGRAMMING PROJECT: SECURE
EXECUTION OF MOBILE PROGRAMS

6. AUTHOR(S)
Raju Pandey

5. FUNDING NUMBERS
C - F30602-97-1-0221
PE - 62301E
PR - F208
TA - 71
WU - 03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Davis
Computer Science Department
Davis California 95616

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-87

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Kevin A. Kwiat/IFGA/(315) 330-1692/Kevin.Kwiat@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Initially, the primary goal of the project was to develop techniques for making systems safe from mobile programs.
During the course of the project, several important results were achieved in security, resource scheduling, runtime
system design, and distributed programming environments. These results include an access control specification
language, novel tools and techniques for enforcing security policies, safe threads package, resource scheduling
algorithms for protecting against denial of service attacks, dynamic Java virtual machine, dynamically configurable
security policy systems, and an adaptive distributed programming environment.

15. NUMBER OF PAGES
13

14. SUBJECT TERMS
Mobile Code, Mobile Programs, JAVA, JVM, Security, Distributed Systems
 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Contents

Abstract 1
1. Overview 2

2. Results 3
 2.1 Enforcement of access control policy 3
 2.2 Safety 4
 2.3 Resource allocation 4
 2.4 Active Composition 5
 2.4.1 Dynamic Java Virtual Machine 6
 2.4.2 Dynamic Access Control 7
 2.5 Distributed Programming Environment 7

3. Software systems produced 8

4. Technology Transfer 8

5. Publications 8

 1

Abstract

This document presents the final report of the University of California, Davis-based
project, officially titled “Secure execution of mobile programs,” primarily known as the
Ariel project. The primary goal of the initial project was to develop techniques for
making systems safe from mobile programs. During the course of the project, several
important results in security, resource scheduling, runtime system design, and distributed
programming environments were achieved. These results include an access control
specification language, novel tools and techniques for enforcing security policies, safe
threads package, and resource scheduling algorithms for protecting against denial of
service attacks, dynamic Java virtual machine, dynamically configurable security policy
systems, and an adaptive distributed programming environment.

 2

1. Overview
The overall goal of the Ariel project at UC Davis is to develop an adaptive, extensible
and secure distributed programming environment. The environment supports adaptivity
and extensibility by allowing components of programs to migrate freely from one name
space to another namespace. While appealing both from system design and extensibility
points of view, programming environments that support free movement of mobile
programs are extremely vulnerable to aberrant execution behaviors of mobile programs.
Since mobile program components run within the same name space as the runtime
system, many of the traditional protection mechanisms such as address space containment
and selective code loading no longer apply. Mobile programs, therefore, have the ability
to maliciously disrupt the execution behavior of runtime systems by interfering with their
execution, by interfering with the execution of other programs within the name space, by
using unauthorized resources, by over-using resources, and by denying resources to other
programs. The primary focus on the DARPA grant was to develop and implement
system techniques [5] that will ensure safe and secure execution of external programs.
The proposal had primarily focused on the following key objectives:

• Development of an access constraint specification language,

• Development of compilers and tools that enforce security policies through

runtime program modification, and

• Development of optimization and verification techniques for ensuring secure

execution of mobile programs.

Over the course of the proposal, our work evolved slightly away from our original
objective. We ended up developing several new research components that were not part
of the original proposal, but that, we believe, form essential elements of a secure
distributed runtime system. This also means that we could not address some of the issues
that we had promised to look at in the original proposals. This primarily involved
developing optimization and verification techniques for ensuring secure execution of
mobile programs. Below, we summarize the original and new approaches that we
developed during the course of the project.

• Declarative language for specifying security policies;

• Binary editing tool for modifying Java byte code programs;

• Security enforcement tool that enforces security policies by transforming Java

mobile programs;

• Safe thread package;

• Resource scheduling mechanisms for protecting mobile runtime environment

 3

from denial of service attacks;

• Dynamically evolving Java Virtual Machine; and

• Support for dynamic security policies.

Administrative note: We had a slower rate of expenditures during the first year of the
project because of problems in hiring graduate students and research staff. This resulted
in a reduction of funding during the third year of the project. We were also granted a six
month extension at the end of the third year. The extension helped us tie many loose
ends and achieve new results. While we did not complete all of the tasks that we had set
out to do, we achieved the central goal of the project along with many new interesting
results.

Outline: The rest of this report is organized as follows: Our research in providing a
secure environment for mobile programs focused on developing techniques for three
security aspects: access control, safety, and safe resource allocation. We describe
enforcement of access control in Section 2.1, safety in multi-threaded system in Section
2.2, and secure resource scheduling in Section 2.3.

Over the course of the research, we realized that much of our techniques were static in
nature, and could not be changed once the system is in operation. This is a major flaw in
most existing systems as they cannot respond to attacks dynamically by re-orienting their
security policies, or even taking away specific privileges. This observation led to the
development of system and security techniques that are truly dynamic in nature, and can
evolve to meet emerging security needs. In Section 2.4, we first describe a dynamic Java
virtual machine that we developed. We then describe a dynamic security infrastructure
that can respond to changes in security policies dynamically.

We describe our technology transfer strategy in Section 4. We conclude by listing the
publications.

2. Results

2.1 Enforcement of Access Control Policy
In this section, we give a brief summary of our approach to enforcing access control. The
details can be found in [11, 12].

We have developed an access control policy language and a set of tools that enforce
security policies on a mobile program. We describe them briefly:

• The access constraint specification language is used to specify constraints over
accesses to resources. Our policy language is a simple declarative language of the
form:

deny (C1.M1 –> C2.M2) when B

 4

 The semantics of this expression is that method M1 of class C1 cannot invoke

method M2 of class C2 when B is true. The Boolean statement can be based on
the parameters of the methods or the state of the system. The language also
describes mechanisms for specifying constraints over a group of classes, an
inheritance model, and mechanisms for overriding constraints.

• Security policies are enforced through tools by integrating the constraint checking

code into the mobile program and resource codes. As a program, P, arrives at
host, H1, Access Constraint Enforcement Tools examine P, local access
constraints, and resource definitions to determine various access relationships.
The tools then generate a set of constraint checking code which it patches into P
and the resource definitions. The modified program then executes and accesses
resources through the constraint checking code. Executions of this code ensures
that P can access a resource only if site-specified constraints are true.

We have implemented the specification language and tools for Java-based mobile
programs. We have also built a framework for defining and loading popular security
models as security policy libraries.

2.2 Safety
We are building a multi-threaded distributed programming environment in which every
mobile program is mapped to a single thread of execution. Our focus here was on
developing an execution environment that protects the runtime system and the mobile
programs from each other. Further, since data sharing among mobile programs may be
dynamic and flexible, the execution environment must support sharing mechanisms that
can be customized dynamically to reflect these sharing patterns. Thus, we need a
protection mechanism that is flexible and provides dynamic sharing among threads of
execution at the user level.

We have built a threads package, called Safe Threads that supports the notion of threads
whose stacks and data elements are completely protected. The thread package contains a
novel mechanism for specifying flexible and dynamic sharing and protection among
threads. In this approach, the notion of protection is represented by an abstract entity,
called a protection domain. Sharing is defined by permission relationships among
protection domains. Applications can bind threads and data elements to different
protection domains in order to dynamically implement different sharing relationships.
The details regarding the behavior of the thread package can be found in [14].

2.3 Resource Allocation
We developed and implemented a framework for defining, analyzing, and controlling
allocation of resources to mobile programs. The details of the approach can be found in
[8, 7, and 6].

 5

As part of this research, we developed a scheduling scheme and a set of algorithms for
scheduling mobile programs. We describe them below:

• Resource usage constraints: We have defined a resource usage constraint
specification language and a Java API that can be used by both site and mobile
programs to specify how host-specific resources should be allocated. The
language is similar to the access control language, except that it has been
extended to allow a site to specify upper bounds, lower bounds, life time, and
real-time usage constraints. The scheme, on the basis of mobile program
requirements and host specifications, constructs a model of resource usage.

• Construction of scheduling graph: The scheme then partitions mobile programs

into real-time and non-real-time programs. Mobile programs are grouped on the
basis of the sites they are coming from, or on the basis of the kinds of resources
the programs access.

• Application of algorithms: The scheme then applies a set of algorithms on the

scheduling graph to schedule mobile programs. We have developed three
different sets of algorithms: (i) an algorithm to enforce upper bounds and lifetime
constraints; (ii) an algorithm to enforce share and priority constraints; and (iii) an
algorithm to enforce real-time deadline based constraints. The scheduling scheme
uses an algorithm composition policy for applying the algorithms on the
scheduling graph.

• Algorithm composition policy: The schemes uses an algorithm composition policy

to determine how conflicts among different resource usage constraints can be
resolved. It implements a policy that always resolve conflicts in favor of security
constraints.

We implemented the scheduling scheme within a simulation environment and the JVM
(JDK version 1.1). We have also performed extensive performance analysis. The
experimental results demonstrate that the scheme helps hosts to both protect and allocate
CPU resources according to their preferences. The scheme effectively combines the
scheduling algorithms in order to enforce both host and mobile program specified
constraints.

2.4 Active Composition
A major weakness of our security model is the inability to modify the access control
policies at runtime. The weakness arises primarily due to the manner in which we modify
external programs and resources. The tool that we had developed enforces access control
by editing an external program and resource code. However, any modifications in access
control policies require that the already downloaded resource code and external program
be modified during runtime. This is not currently possible in the JVM.

We started to look at the notion of active composition as a technique for implementing

 6

dynamic access control and for optimizations that remove unnecessary security checks.
Active composition involves allowing a program to modify its components at runtime.
We can use this capability to re-implement security policies at runtime. We explored the
following issues in this regard:

• Develop a model for supporting dynamic classes in the Java virtual machine.

• Design an implementation scheme for dynamic classes.

• Develop a dynamic access control mechanism and implement it using dynamic
classes. We briefly describe a dynamic Java virtual machine and a dynamically
reconfigurable security infrastructure below.

2.4.1 Dynamic Java Virtual Machine
We have developed a formal framework for composition, inheritance, and dynamic
change in the Java environment. In our approach, Java programs can evolve by changing
their components, namely classes, during their execution. Changes in a class also lead to
changes in the instances of the class, thereby allowing evolution of both code and state.
Our design is motivated by several design concerns: (i) Maintain type-safety of the Java
programs since many of the Java’s security mechanisms (for instance, separation of user
and system name spaces, and protection of private data) depend on the assertion that an
executing Java program is type safe. (ii) Maintain security properties of Java programs.
Thus, we implement a security model that ensures that Java programs can dynamically
modify only those resources to which they are authorized. We enforce this policy
through name space separation and resource access control. Our work here involved the
following:

• Development of a formal framework for composition, inheritance, and dynamic
change in the Java environment.

• Design of an extensible class loader that allows programs to redefine its classes.

• Development of a security framework that insures that Java applets cannot modify

protection mechanisms through the dynamic classes mechanism.

• Implementation of the dynamic classes mechanism.

The details regarding this work can be found in [9, 10]. While much of our work here
was done to support a dynamic access control model, we believe that dynamic JVM can
be used to several additional purposes, including runtime optimization, runtime code
distribution and update, and hot updates. We are exploring several applications of
dynamic classes.

 7

2.4.2 Dynamic Access Control
We have developed a dynamic access control model in which security properties of a host
can be defined and modified during runtime. Dynamic reconfiguration of security
policies is needed in several instances, especially in complex and large distributed
systems. While it is possible to represent many of the above conditions using the static
security policy mechanisms, such representations may require anticipating all possible
changes and specifying them. Such solutions may be awkward to represent, and may
incur unnecessary overhead in many cases. We redesigned and re-implemented our
access control mechanism to support a dynamic security infrastructure. The
infrastructure includes the following:

• A declarative policy specification language for specifying access constraints.

• A meta-policy model that allows meta-representations of security policies. Within
the meta-policy model, each security policy is represented as a first class object.

• A runtime meta-interface that can be used to inspect, add, delete, and modify

security policies at runtime.

• An implementation where security policies are enforced through program
transformation in which transposition code for protected resources are generated
on-the-fly and integrated within the resource code before the modified resource is
loaded in the Java virtual machine.

The details of the new policy model can be found in [4, 3].

2.5 Distributed Programming Environment
In addition to developing security techniques, we are also developing a distributed
programming environment that will form the basis for integrating the security techniques.
Unfortunately, the funding for the overall project ran out before we could fully develop
the distributed programming environment and integrate all of the security techniques. We
have continued to work on the programming environment, which is currently supported
by a grant from NSF ITR. Below we briefly describe our approach.

The programming model supports an environment in which components of a program can
freely migrate among distributed hosts. In this environment, both users and the
underlying runtime system can initiate migration of components to adapt dynamically to
changes in load, resource availability, resource distribution, component distribution, and
other application-specific factors. Thus, the programming model supports mobility of
code, data, and programs, and also for the dynamic control of both applications and
servers. We implemented the model on top of Java JDK version 1.2. The details of this
work can be found in [2].

 8

3. Software Systems Produced
Over the course of the project, we have developed the following software systems:

• Access control specification compiler

• Java byte code binary editing tool

• Access constraint enforcement tool

• Safe threads package

• Resource scheduling simulator

• Modified JVM with hierarchical scheduling scheme

• Dynamic Java virtual machine

• Dynamic access control policy tool

• Distributed programming environment

4. Technology Transfer
University of California, Davis is filing a patent based on the work that was carried out
during the project. The patent covers our research on dynamic systems. The university,
through its technology transfer division, is in the process of creating a commercial
relationship with companies such as Sun, HP, Oracle and IBM. This will lead to transfer
of our ideas within the next generation of Java virtual machines.

5. Publications
[1] R. Pandey B. Hashii, S. Malarbarba and M. Bishop. Supporting reconfigurable

security policies for mobile programs. Technical Report TR-2000-8, Department
of Computer Science, University of California, Davis, 2000

[2] E. Barr, R. Pandey, and M. Haungs. Mage: A distributed programming model. In

Proceedings of the International Conference on Distributed Computing, pages
303–312. IEEE, April 2001

[3] B. Hashii, S. Malabarba, R. Pandey, and M. Bishop. Dynamic security policies

for mobile java programs. Computer Networks, (33):77–93, 2000

[4] B. Hashii, S. Malabarba, R. Pandey, and M. Bishop. Extensible security policies

for mobile java programs. In The Proceedings of the 9th International World
Wide Web Conference, pages 77–94, Amsterdam, May 2000. Elsevier

[5] B. Hashii, R. Pandey, S. Samorodin, and M. Lal. Securing Systems Against

External Programs. IEEE Internet Magazine, 2(6):35–45, Nov/Dec 1998

 9

[6] M. Lal and R. Pandey. CPU Resource Control for Mobile Programs. In

Proceedings of the First International Symposium on Agent Systems and
Applications, Oct 1999

[7] M. Lal and R. Pandey. A scheduling scheme for controlling allocation of CPU

resources for mobile programs. Technical Report TR-1999-05, Department of
Computer Science, University of California, Davis, 1999

[8] M. Lal and R. Pandey. A scheduling scheme for controlling allocation of CPU

resources to mobile programs. Journal of Autonomous and Multi-Agent Systems,
2002

[9] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support for

type-safe dynamic java classes. In The Proceedings of the European Conference
on Object-Oriented Programming, 2000

[10] S. Malarbarba, R. Pandey, J. Gragg, E. Barr, and J. Fritz Barnes. Support for type-

safe dynamic java classes. Technical Report TR-2000-7, Department of Computer
Science, University of California, Davis, 2000

[11] R. Pandey and B. Hashii. Providing fine-grained access control for java programs.

In Proceedings of the European Conference on Object-Oriented Programming,
1999

[12] R. Pandey and B. Hashii. Providing fine-grained access control for java programs

through binary editing. Concurrency: Practice and Experience, 2001

[13] R. Pandey, B. Hashii, and M. Lal. Secure execution of mobile programs. In The

Proceedings DARPA Information Survivability Conference and Exposition
(DISCEX’00), 2000

[14] S. Samorodin and R. Pandey. Supporting flexible safety and sharing in multi-

threaded environments. In The Proceedings of the Run Time Systems Workshop,
2000

